XXIT MFPS, 24-27 May 2006, Genova

Simplification and Computation

Eugenio Moggi

noggi @li si . unige.it

DISI, Univ. of Genova

MFPS'06 — p.1/1

Summary

AIM: structuring operational semantics to separate computational effects from
other (programming language) features

Preliminary discussion

o monadic approach to denotational semantics

o what kind of operational semantics? TS vs LTS

General approach
» simplification: confluent term rewriting, referential transparency
& computation: configurations, computational effects

A concrete proposal
PMC [Kah03]: pattern matching calculus

o CHAM [BB92] and Join calculus [FG96,FGO02].
configurations as multi-sets of terms (and computation rules)

Encodings: expected properties, some examples
Conclusions and issues

MFPS'06 — p.2/1

Monadic approach in a nutshell

Traditional approach to denotational semantics
® [—],: PL — C interpretation
P L programming language
C category (with suitable properties and additional structure)
Monadic approach to denotational semantics factors [—], into
® (—):PL — ML), compositional translation

M L, monadic metalanguage — better separation of mathematical concerns
ML internal language for category C
M computational types syntax for monad (or related notions)

® [-|: MLy — (C, M) standard interpretation parametric w.r.t. monad
C category with universal properties, M additional structure (monad)

MFPS'06 — p.3/1.

What kind of operational semantics?

SOS [Plo81] based on inference rules for deriving operational judgments
too general to suggest common patterns and points of variation

Labeled Transition Systems (LTS) s LY

describe potential interaction of open system with external environment
Transition Systems (TS) s —— s’ describe potential evolution of closed system
open system + environment = closed system

TS vs LTS: TS are preferable to specify observational equivalence ~ on
program fragments (e.g. see work on HO r-calculus [San93])

~ as congruence induced by basic observations on closed system

Other (ignored) issues:

beyond non-determinism: probabilistic, stochastic and hybrid systems
functorial operational semantics based on co-algebras [Tur96]

static guarantees: operational semantics specified independently

REPLACE category (for denotational sem.) with TS (for operational sem.)

MFPS'06 — p.4/1

General approach: simplification and computation

® Distinguish atoms from variables — FreshML [GP99,SGPO03]
® Termse— A(e) and FV (e) denote set of atoms and free variables of e

® SIMPLIFICATION is a relation e —— ¢’ on terms
preserving atoms and free variables, i.e. A(e’) C A(e) and FV(e') C FV(e)
» confluent and compatible, i.e. can be applied in any order and any context
invariant w.r.t. permutations 7 of atoms and substitutions p of variables with

e — ¢ e — ¢

terms, I.e.

elr] — eln] elp] — ¢'[p]

MFPS'06 — p.5/1

L I B

°

General approach: simplification and computation

Distinguish atoms from variables — FreshML [GP99,SGP03]

Terms e — A(e) and FV(e) denote set of atoms and free variables of e
SIMPLIFICATION is a relation e — ¢’ on terms

Configurations s built from terms — A(s) set of atoms of s (no free variables)
thus simplification extends to configurations s; —— so

COMPUTATION is a relation s; —— s 0on configurations

& invariant w.r.t. permutations = of atoms
S1 | > S9

» preserved by simplification, i.e. x

!
!
!
!
Y \

MFPS'06 — p.5/1

General approach: simplification and computation

Distinguish atoms from variables — FreshML [GP99,SGP03]
Terms e — A(e) and FV(e) denote set of atoms and free variables of e

SIMPLIFICATION is a relation e — ¢’ on terms
Configurations s built from terms — A(s) set of atoms of s (no free variables)

L I B

thus simplification extends to configurations s; —— so
® COMPUTATION is a relation s; —— s on configurations

Simplification supports referential transparency, thus
® suitable for pure functional languages (PFL), typed calculi for proof assistants
® implementable using PFL techniques: lazy evaluation, graph reduction

Computation induces TS on configurations modulo simplification — CHAM [BB92].
In reduction semantics configurations are terms.

MFPS'06 — p.5/1

A concrete proposal — terms and simplification

® atoma € A, name variable y, Nameu e N::=a | y

® term variable z, pattern p, Term e € E — related to PMC [Kah03]
p = Tx|lup|?yp wumatches only itself, 7y matches any «

atoms A(p), declared variables DV (p) and free (name) variables FV(p) of p

p |A() |DV(p) |FV(p)
Tx x

up | A(u,p) | DV(p) | FV(u,p)

'yp | AP) |y, DV(p) | FV(p) —y

pp | Alp;p) | DV(p,p) | FV(p),FV(p) — DV(p)
» linearity: 7x and ?y can be declared at most once

binding: the occurrences of y on the left of 7y are bound

MFPS'06 — p.6/1.

A concrete proposal — terms and simplification

® atoma € A, name variable y, Nameu e N::=a | y
® term variable z, pattern p, Term e € E — related to PMC [Kah03]

p = Tx|lup|?yp wumatches only itself, 7y matches any «
e ::= x|uel|oke| fail constructor v applied to sequence of terms
| (p=ei1le2) | e1Qey | e1:p=ea | (e15€2) | PMC [Kal03]

| let{x; =¢;|i € n} ine binding for mutual recursive definitions

e FVi(e)
(p=e1le2) | FV(p),FV(e1) — DV(p),FV(ez2)
€1:p=€2 FV(@l), FV(p), FV(@Q) — DV(p)

MFPS'06 — p.6/1.

A concrete proposal — terms and simplification

® atoma € A, name variable y, Nameu e N::=a | y
® term variable z, pattern p, Term e € E — related to PMC [Kah03]

p = Tx|lup|?yp wumatches only itself, 7y matches any «
e ::= x|uel|oke| fail constructor v applied to sequence of terms
| (p=e1les) | e1Qeq | e1: p=res | (e1;€2) | PMC [Kal03]

| let{x; =¢;|i € n} ine binding for mutual recursive definitions

® Simplification induced by left-linear and non-overlapping rewrite rules

(p=e1lea)@e — e: p=ok e1; exQe)

(
(ok e;e’) —— e
(fail;e') —— €

e

e:lr=e’ — "z €]
we:typ=>e’ —— eplyul=¢€[y:u] when [e] = |p|
aeap=e’ —— ep=€e when|el =|p|

let {x; =¢e;lien}ine — elx;:let{x; =¢;|i €n}ine;|i € n

MFPS'06 — p.6/1.

A concrete proposal — terms and simplification

® atoma € A, name variable y, Nameu e N::=a | y

® term variable z, pattern p, Term e € E — related to PMC [Kah03]

p = Tx|lup|?yp wumatches only itself, 7y matches any «
e ::= x|uel|oke| fail constructor v applied to sequence of terms

| (p=ei1lez) | e1Qes | e1: p=es | (e15€2) | PMC [Kal03]
| let{xz; =¢;|t €n}ine binding for mutual recursive definitions

® Simplification induced by left-linear and non-overlapping rewrite rules

(v;e') —— fail whenwv # ok e | fail
v@Qe —— fail when v # (p=e|es)
v:yp=e’ —— fail when v # u e with |e| = |p|

v::=ue€| (p=-e1les) top-level unchanged by simplification or instantiation

MFPS'06 — p.6/1.

A concrete proposal — terms and simplification

atom a € A, name variable y, Nameu e N::=a |y
term variable x, pattern p, Term e € E — related to PMC [Kah03]

p = Tx|lup|?yp wumatches only itself, 7y matches any «
e ::= x|uel|oke| fail constructor v applied to sequence of terms
| (p=e1les) | e1Qeq | e1: p=res | (e1;€2) | PMC [Kal03]

| let{x; =¢;|i € n} ine binding for mutual recursive definitions

Simplification induced by left-linear and non-overlapping rewrite rules

Examples of patterns

® po=c?x (withce A) matched by ceforany e € E
® p; =c?ymatched by caforanya e A

® po =7y y matched by a a forany a € A

MFPS'06 — p.6/1.

A concrete proposal — terms and simplification

atom a € A, name variable y, Nameu e N::=a |y

term variable x, pattern p, Term e € E — related to PMC [Kah03]

p = Tx|lup|?yp wumatches only itself, 7y matches any «
e ::= x|uel|oke| fail constructor v applied to sequence of terms
| (p=e1les) | e1Qeq | e1: p=res | (e1;€2) | PMC [Kal03]

| let{x; =¢;|i € n} ine binding for mutual recursive definitions

Simplification induced by left-linear and non-overlapping rewrite rules

Examples of terms
» test for equality of names eq = ("y=-(y=-true|?y'= false|fail)|fail)
term constructors as atoms, term destructors defined with let-binding, e.g.

natural numbers: zero z: N and successor s: N — N are atoms, iterator
it: X — (X — X) - N — X defined by recursion and pattern-matching
letit = (Te="7f=(z=z | s ITn=itQzQfQn | fail))in ...

MFPS'06 — p.6/1.

A concrete proposal — configurations and computation

® join pattern J — related to Join and Kell calculi [FG96,FG02,5te03,BS03]
J := A(u; p;li € n)} amulti-set of patterns u p

atoms, declared variables and free (name) variables of J define by union
» weaken linearity: 7z can be declared in at most one u p of J

instantiation: Jp (J and p closed) is the molecule (multi-set of terms u €)
obtained by replacing the only occurrence of 7z in J with p(x), and all
occurrences of 7y and y in J with p(y)

J in Join have restricted format y 7y .. .7y, only linear name-matching

MFPS'06 — p.7/1

A concrete proposal — configurations and computation

® join pattern J — related to Join and Kell calculi [FG96,FG02,5te03,BS03]

J := A(u; p;li € n)} amulti-set of patterns u p
® Computationrule r ::= J>vy.R|E R|E multi-set of rules and terms
r FV(r)

J > vy.R|E

FV(J),FV(R,E)—7y —DV(J)

MFPS'06 — p.7/1

A concrete proposal — configurations and computation

join pattern J — related to Join and Kell calculi [FG96,FG02,S5te03,BS03]
J := A(u; p;li € n)} amulti-set of patterns u p
Computationrule r ::= J >vy.R|E R|E multi-set of rules and terms

Configuration s = multi-set R|E of closed terms and rules, i.e. FV(R, E) = ()

Computation defined by name generation + multi-set rewriting

slr|Jp +—— s|r|(R|E)[y:a,p] wherer=J>vy.R|E
p closed substitution for variables in DV (J) and @ fresh for s | r | Jp

Join/Kell rules are in BNF of terms: reflexive CHAM
rin Kell can be used only once: but replication allows indefinite reuse

Join has implicit set of locations (by partitioning A) and rules are located.
One can impose syntactic restrictions on r to enforce this property.

MFPS'06 — p.7/1

°

e o 0o @

A concrete proposal — configurations and computation

join pattern J — related to Join and Kell calculi [FG96,FG02,S5te03,BS03]
J := A(u; p;li € n)} amulti-set of patterns u p

Computationrule r ::= J >vy.R|E R|E multi-set of rules and terms

Configuration s = multi-set R|F of closed terms and rules, i.e. FV(R, E) = ()
Computation defined by name generation + multi-set rewriting

Example of interpreter for imperative programs

& interpreted atoms: ...
new: X — (RX — MY) — MY initialize new reference with a value
get: RX — (X — MY) — MY getvalue store in reference

atoms prg: MY and str: RX, X for program and store
& computation rules for imperative programs:

prg (new ?x 7k) > vy.prg (kQy) | stry x

prg (get 7y k) | str 7y ?7x > prg (kQx) | stry x

MFPS'06 — p.7/1

Encodings — general ideas

Direct approach to operational semantics
® P programming language — syntax
® (S,, o~) transition system — small-step operational semantics
configurations in S, involve programs in PL and other stuff
® Dbasic observations on configurations — ignored for simplicity

Operational semantics via encoding

® (—): PL —— E compositional encoding of programs (and other syntactic
categories) into terms

® R C S, x S surjective bisimulation between (S,, o>) and

MFPS'06 — p.8/1.

Encoding of monadic metalanguage M Ly, (with references) [MF03]

® Syntax of monadic metalanguage —term M € E,
M::=x | .M | MM, |ret M |do M; My |new M |get M | set My Ms | a
S ::=none | push M S — references « and control stacks S are instrumental
® Simplification for M L, is g-reduction: (Ax. M) My — My |x: Mo

® Translation (—)* of M L, is basically the identity, except
® \x.M translates into (?x=-M*|fail)
o M Ms translates into M{ QM

MFPS'06 — p.9/1.

Encoding of monadic metalanguage M Ly, (with references) [MF03]

® Syntax of monadic metalanguage —term M € E,
M::=x | .M | MM, |ret M |do M; My |new M |get M | set My Ms | a
S ::=none | push M S — references « and control stacks S are instrumental
® Simplification for M L, is g-reduction: (Ax. M) My — My |x: Mo

® Configurations (u|M, .S) with p: A i E,, and Computation rules for M L,
& (p|/do My My, S) —— (u| My, push M; S)

(p|ret My, push My S) —— (| My My, S)

(u|lnew M, S) —— (u,a: M|ret a, S) with a € A fresh

(

(

plgeta, S) —— (ulret M, S) if u(a) = M
p,a: M'|seta M,S) —— (u,a: M|ret a,5)

e o o ®

MFPS'06 — p.9/1.

Encoding of monadic metalanguage M Ly, (with references) [MF03]

Syntax of monadic metalanguage — term M € E,

M::=x | .M | MM, |ret M |do M; My |new M |get M | set My Ms | a
S ::=none | push M S — references « and control stacks S are instrumental
Simplification for M Ly, is g-reduction: (Ax.My)My —— M |z: Ms)]

Configurations (x| M, S) with p: A ki E,, and Computation rules for M L,

Strong bisimulation relates (u|M, S) to multi-set (modulo simplification) with
® prg M* S* represents program thread
® stra M* whenever u(a) = M, represents the store p

and computation rules corresponding to those for M L,,, e.g.
& prg (do 7zy 7x9) 7S > prg x1 (push x5 5)

& prg (new ?x) 7S > vy.prg (rety) S |stry x

o prg (get 7y) 7S | str?y 7z > prg (retz) S| stry

MFPS'06 — p.9/1.

Encoding of Mobile Ambients [CG98]: centralized impl.

® Syntax of MA — processes P € E,
P::=0|(P|P)|'P|vy.P|ylP]|Iny.P|outy.P|openy.P
® Translation (—)* of M A, sample of clauses
» (P,|P,) translates into par Py P;
vy. P translates into new (7y=P*| fail)

o
y|P] translates into box y P*
iny.P translates into in y P*

MFPS'06 — p.10/1.

Encoding of Mobile Ambients [CG98]: centralized impl.

® Syntax of MA — processes P € E,
P::=0|(P|P)|'P|vy.P|ylP]|Iny.P|outy.P|openy.P

® Configurations for M A = processes (modulo structural equivalence)
Basic reduction rules for M A (there are other rules for propagation)
s nfinm.P | Q]| m[R 1%”m[P Q]| R
» mlnjout m.P | Q]| R] = n[P | Q] | m[R]

PlaQ

open

® openm.P | m|Q] —

MFPS'06 — p.10/1.

Encoding of Mobile Ambients [CG98]: centralized impl.

Syntax of MA — processes P € E,
P::=0|(P|P)|'P|vy.P|ylP]|Iny.P|outy.P|openy.P
Configurations for M A = processes (modulo structural equivalence)

Weak bisimulation relates P to a multi-set (modulo simplification) with
® prg a e thread executing e in ambient a

amb a n c ambient ¢ has nhame n and parent ambient ¢

opened a c ambient a has been opened in parent ambient ¢

and rules located at the same place {prg, amb, opened} —

MFPS'06 — p.10/1.

Encoding of Mobile Ambients [CG98]: centralized impl.

Syntax of MA — processes P € E,
P::=0|(P|P)|'P|vy.P|ylP]|Iny.P|outy.P|openy.P
Configurations for M A = processes (modulo structural equivalence)
Weak bisimulation relates P to a multi-set (modulo simplification) with
® prg a e thread executing e in ambient a

amb a n c ambient ¢ has nhame n and parent ambient ¢
opened a c ambient a has been opened in parent ambient ¢

computation rules for heating (sample of rules)
® prg 7y (par ?xy 7xo) > pPrgy x1 | prg y o

& prg 7’y (new ?x) > vn.prg y (z@Qn)

o prg 7y (box ?n ?x) > vy'.prgy z | amb y’ ny

MFPS'06 — p.10/1.

Encoding of Mobile Ambients [CG98]: centralized impl.

Syntax of MA — processes P € E,
P::=0|(P|P)|'P|vy.P|ylP]|Iny.P|outy.P|openy.P

Configurations for M A = processes (modulo structural equivalence)

Weak bisimulation relates P to a multi-set (modulo simplification) with
® prg a e thread executing e in ambient a

#® amb a n ¢ ambient a has name n and parent ambient ¢

opened a c ambient a has been opened in parent ambient ¢

Computation rules for mobility

»

»

amb ?y" tm 7y"

amb 7y’ tm 7y"

| prg 7y (in ?7m ?x) |amb 7y ?n 7y"” > prgy x | amb y n ¢/

| prg 7y (out ?m ?x) |amb 7y ?n 7y’ > prg y x | amb y n "

MFPS'06 — p.10/1.

Encoding of Mobile Ambients [CG98]: centralized impl.

® Syntax of MA — processes P € E,
P::=0|(P|P)|'P|vy.P|ylP]|Iny.P|outy.P|openy.P
® Configurations for M A = processes (modulo structural equivalence)

® \Weak bisimulation relates P to a multi-set (modulo simplification) with
® prg a e thread executing e in ambient a
amb a n c ambient ¢ has nhame n and parent ambient ¢
opened a c ambient a has been opened in parent ambient ¢
Computation rules for opening
o prg 7y (open ?m ?x) | amb 7y’ ?m 7y > prg y x | opened vy’ y

® |opened 7y’ Ty || prg 7y Tx > prgy x

o |opened 7y’ 7y || amb 7y n 7y’ > amby”’ n
Y Yy Y Yy

MFPS'06 — p.10/1.

Encodings of Mobile Ambients [CG98]

Alternative encoding for distributed impl. of MA [FLSOOQ]

® process P of MA related to a multi-set (modulo simplification) with
a prg e thread executing e in ambient a
® a sup c ambient ¢ has parent ambient ¢
c¢Ssub a n ambient a has name n and is sub-ambient of ¢

® and computation rules for ambient a located at {a} — for instance
® aprg (box ™n?x) > vy.inity x | y supa | asubyn
& init?y 7x > Rly] | y prg x — R|y] set of computation rules for ambient y

MFPS’'06 — p.11/1

Encodings of Mobile Ambients [CG98]

Alternative encoding for distributed impl. of MA [FLSOOQ]

® process P of MA related to a multi-set (modulo simplification) with
a prg e thread executing e in ambient a
® a sup c ambient ¢ has parent ambient ¢
c¢Ssub a n ambient a has name n and is sub-ambient of ¢

® and computation rules for ambient a located at {a}

® weak bisimulation replaced by weak coupled-simulation:
atomic steps of MA implemented with protocols with gradual commitment

MFPS’'06 — p.11/1

Encodings of Mobile Ambients [CG98]

Alternative encoding for distributed impl. of MA [FLSOOQ]

® process P of MA related to a multi-set (modulo simplification) with
a prg e thread executing e in ambient a
® a sup c ambient ¢ has parent ambient ¢
c¢Ssub a n ambient a has name n and is sub-ambient of ¢

® and computation rules for ambient a located at {a}
Extending encoding for centralized impl. of MA: adding HO communication
® P::=... |z|(P)]| (x)P - extended syntax

comm

(P) | (2)Q ——
® extended translation (—)*

» (P) translates into put P*

(x)P translates into get (?x=P*|fail)

Q|x: P] — reduction for local comm.

® prg 7y (get?xq) | prg 7y (put ?zo) > prg y (x1@zs) — rule for local comm.

MFPS’'06 — p.11/1

Conclusions and Issues

® General approach for structuring operational semantics:
simplification + computation

Simplification capture things that one does not care to control/program,
because they are simple and semantics preserving (referential transparency)

® Concrete proposal: based on ideas from FreshML, PMC and CHAM

There is scope for variations and improvements, e.g.
» first-class patterns — as in pure pattern calculus [JK06]
more refined computation rules — for probabilistic/stochastic systems

more elaborate configurations — to describe parts of a closed system, e.g.
environment, that are loosely specified or not directly controlled/programed.

MFPS'06 — p.12/1.

	Summary
	Monadic approach in a nutshell
	What kind of operational semantics?
	General approach: simplification and computation
	A concrete proposal -- terms and simplification
	A concrete proposal -- configurations and computation
	Encodings -- general ideas
	Encoding of monadic metalanguage ML_M �ld {(with references)}
cite {MF03}
	Encoding of Mobile Ambients cite {CG98}: emph {centralized} impl.
	Encodings of Mobile Ambients cite {CG98}
	Conclusions and Issues

