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Summary

AIM: structuring operational semantics to separate computational effects from
other (programming language) features

Preliminary discussion
monadic approach to denotational semantics
what kind of operational semantics? TS vs LTS

General approach

simplification: confluent term rewriting, referential transparency
computation: configurations, computational effects

A concrete proposal
PMC [Kah03]: pattern matching calculus
CHAM [BB92] and Join calculus [FG96,FG02]:
configurations as multi-sets of terms (and computation rules)

Encodings: expected properties, some examples

Conclusions and issues
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Monadic approach in a nutshell

Traditional approach to denotational semantics

[[−]]o: PL - C interpretation

PL programming language

C category (with suitable properties and additional structure)

Monadic approach to denotational semantics factors [[−]]o into

(−): PL - MLM compositional translation

MLM monadic metalanguage – better separation of mathematical concerns

ML internal language for category C

M computational types syntax for monad (or related notions)

[[−]]: MLM
- (C, M) standard interpretation parametric w.r.t. monad

C category with universal properties, M additional structure (monad)
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What kind of operational semantics?

SOS [Plo81] based on inference rules for deriving operational judgments

too general to suggest common patterns and points of variation

Labeled Transition Systems (LTS) s
l
- s′

describe potential interaction of open system with external environment

Transition Systems (TS) s - s′ describe potential evolution of closed system

open system + environment = closed system

TS vs LTS: TS are preferable to specify observational equivalence ≈ on
program fragments (e.g. see work on HO π-calculus [San93])

≈ as congruence induced by basic observations on closed system

Other (ignored) issues:
beyond non-determinism: probabilistic, stochastic and hybrid systems
functorial operational semantics based on co-algebras [Tur96]
static guarantees: operational semantics specified independently

REPLACE category (for denotational sem.) with TS (for operational sem.)
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General approach: simplification and computation

Distinguish atoms from variables – FreshML [GP99,SGP03]

Terms e – A(e) and FV(e) denote set of atoms and free variables of e

SIMPLIFICATION is a relation e - e′ on terms
preserving atoms and free variables, i.e. A(e′) ⊆ A(e) and FV(e′) ⊆ FV(e)

confluent and compatible, i.e. can be applied in any order and any context
invariant w.r.t. permutations π of atoms and substitutions ρ of variables with

terms, i.e.
e - e′

e[π] - e′[π]

e - e′

e[ρ] - e′[ρ]

Configurations s built from terms – A(s) set of atoms of s (no free variables)

thus simplification extends to configurations s1
- s2

COMPUTATION is a relation s1
- s2 on configurations

Simplification supports referential transparency, thus

suitable for pure functional languages (PFL), typed calculi for proof assistants

implementable using PFL techniques: lazy evaluation, graph reduction

Computation induces TS on configurations modulo simplification – CHAM [BB92].
In reduction semantics configurations are terms.
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A concrete proposal – terms and simplification

atom a ∈ A, name variable y, Name u ∈ N : := a | y

term variable x, pattern p, Term e ∈ E – related to PMC [Kah03]

p : := ?x | u p | ?y p u matches only itself, ?y matches any u

atoms A(p), declared variables DV(p) and free (name) variables FV(p) of p

p A(p) DV(p) FV(p)

?x x

u p A(u, p) DV(p) FV(u, p)

?y p A(p) y, DV(p) FV(p) − y

p p A(p, p) DV(p, p) FV(p), FV(p) − DV(p)

linearity: ?x and ?y can be declared at most once
binding: the occurrences of y on the left of ?y are bound

e : := x | u e | ok e | fail constructor u applied to sequence of terms
| (p⇒e1|e2) | e1@e2 | e1: p⇒e2 | (e1; e2) | PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions

Simplification induced by left-linear and non-overlapping rewrite rules
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p : := ?x | u p | ?y p u matches only itself, ?y matches any u

e : := x | u e | ok e | fail constructor u applied to sequence of terms
| (p⇒e1|e2) | e1@e2 | e1: p⇒e2 | (e1; e2) | PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions

e FV(e)

(p⇒e1|e2) FV(p), FV(e1) − DV(p), FV(e2)

e1: p⇒e2 FV(e1), FV(p), FV(e2) − DV(p)

. . . . . .

Simplification induced by left-linear and non-overlapping rewrite rules
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A concrete proposal – terms and simplification

atom a ∈ A, name variable y, Name u ∈ N : := a | y

term variable x, pattern p, Term e ∈ E – related to PMC [Kah03]

p : := ?x | u p | ?y p u matches only itself, ?y matches any u

e : := x | u e | ok e | fail constructor u applied to sequence of terms
| (p⇒e1|e2) | e1@e2 | e1: p⇒e2 | (e1; e2) | PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions

Simplification induced by left-linear and non-overlapping rewrite rules

(p⇒e1|e2)@e - (e: p⇒ok e1; e2@e)

(ok e; e′) - e

(fail; e′) - e′

e: ?x⇒e′ - e′[x: e]

u e: ?y p⇒e′ - e: p[y: u]⇒e′[y: u] when |e| = |p|

a e: a p⇒e′ - e: p⇒e′ when |e| = |p|

let {xi = ei|i ∈ n} in e - e[xi: let {xi = ei|i ∈ n} in ei|i ∈ n]
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A concrete proposal – terms and simplification

atom a ∈ A, name variable y, Name u ∈ N : := a | y

term variable x, pattern p, Term e ∈ E – related to PMC [Kah03]

p : := ?x | u p | ?y p u matches only itself, ?y matches any u

e : := x | u e | ok e | fail constructor u applied to sequence of terms
| (p⇒e1|e2) | e1@e2 | e1: p⇒e2 | (e1; e2) | PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions

Simplification induced by left-linear and non-overlapping rewrite rules

(v; e′) - fail when v 6≡ ok e | fail

v@e - fail when v 6≡ (p⇒e1|e2)

v: ?y p⇒e′ - fail when v 6≡ u e with |e| = |p|

. . .

v : := u e | (p⇒e1|e2) top-level unchanged by simplification or instantiation
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A concrete proposal – terms and simplification

atom a ∈ A, name variable y, Name u ∈ N : := a | y

term variable x, pattern p, Term e ∈ E – related to PMC [Kah03]

p : := ?x | u p | ?y p u matches only itself, ?y matches any u

e : := x | u e | ok e | fail constructor u applied to sequence of terms
| (p⇒e1|e2) | e1@e2 | e1: p⇒e2 | (e1; e2) | PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions

Simplification induced by left-linear and non-overlapping rewrite rules

Examples of patterns
p0 ≡ c ?x (with c ∈ A) matched by c e for any e ∈ E

p1 ≡ c ?y matched by c a for any a ∈ A

p2 ≡?y y matched by a a for any a ∈ A
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A concrete proposal – terms and simplification

atom a ∈ A, name variable y, Name u ∈ N : := a | y

term variable x, pattern p, Term e ∈ E – related to PMC [Kah03]

p : := ?x | u p | ?y p u matches only itself, ?y matches any u

e : := x | u e | ok e | fail constructor u applied to sequence of terms
| (p⇒e1|e2) | e1@e2 | e1: p⇒e2 | (e1; e2) | PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions

Simplification induced by left-linear and non-overlapping rewrite rules

Examples of terms
test for equality of names eq = (?y⇒(y⇒true|?y′⇒false|fail)|fail)

term constructors as atoms, term destructors defined with let-binding, e.g.
natural numbers: zero z: N and successor s: N → N are atoms, iterator
it: X → (X → X) → N → X defined by recursion and pattern-matching
let it = (?x⇒?f⇒(z⇒x | s ?n⇒it@x@f@n | fail)) in . . .
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A concrete proposal – configurations and computation

join pattern J – related to Join and Kell calculi [FG96,FG02,Ste03,BS03]

J : := {(ui pi|i ∈ n)} a multi-set of patterns u p

atoms, declared variables and free (name) variables of J define by union
weaken linearity: ?x can be declared in at most one u p of J

instantiation: Jρ (J and ρ closed) is the molecule (multi-set of terms u e)
obtained by replacing the only occurrence of ?x in J with ρ(x), and all
occurrences of ?y and y in J with ρ(y)

J in Join have restricted format y ?y1 . . .?yn: only linear name-matching

Computation rule r : := J > νy.R|E R|E multi-set of rules and terms

Configuration s = multi-set R|E of closed terms and rules, i.e. FV(R, E) = ∅

Computation defined by name generation + multi-set rewriting
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A concrete proposal – configurations and computation

join pattern J – related to Join and Kell calculi [FG96,FG02,Ste03,BS03]

J : := {(ui pi|i ∈ n)} a multi-set of patterns u p

Computation rule r : := J > νy.R|E R|E multi-set of rules and terms

Configuration s = multi-set R|E of closed terms and rules, i.e. FV(R, E) = ∅

Computation defined by name generation + multi-set rewriting

s | r | Jρ - s | r | (R|E)[y: a, ρ] where r ≡ J > νy.R|E

ρ closed substitution for variables in DV(J) and a fresh for s | r | Jρ

Join/Kell rules are in BNF of terms: reflexive CHAM
r in Kell can be used only once: but replication allows indefinite reuse
Join has implicit set of locations (by partitioning A) and rules are located.
One can impose syntactic restrictions on r to enforce this property.
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A concrete proposal – configurations and computation

join pattern J – related to Join and Kell calculi [FG96,FG02,Ste03,BS03]

J : := {(ui pi|i ∈ n)} a multi-set of patterns u p

Computation rule r : := J > νy.R|E R|E multi-set of rules and terms

Configuration s = multi-set R|E of closed terms and rules, i.e. FV(R, E) = ∅

Computation defined by name generation + multi-set rewriting

Example of interpreter for imperative programs
interpreted atoms: . . .
new: X → (RX → MY ) → MY initialize new reference with a value
get: RX → (X → MY ) → MY get value store in reference
atoms prg: MY and str: RX, X for program and store
computation rules for imperative programs:
prg (new ?x ?k) > νy.prg (k@y) | str y x

prg (get ?y ?k) | str ?y ?x > prg (k@x) | str y x
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Encodings – general ideas

Direct approach to operational semantics

PL programming language – syntax

(So, o- ) transition system – small-step operational semantics

configurations in So involve programs in PL and other stuff

basic observations on configurations – ignored for simplicity

Operational semantics via encoding

(−): PL - E compositional encoding of programs (and other syntactic
categories) into terms

R ⊂ So × S surjective bisimulation between (So, o- ) and

(S,
∗
- -

∗
- )
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Encoding of monadic metalanguage MLM (with references) [MF03]

Syntax of monadic metalanguage – term M ∈ Eo

M : := x | λx.M | M1M2 | ret M | do M1 M2 | new M | get M | set M1 M2 | a

S : := none | push M S – references a and control stacks S are instrumental

Simplification for MLM is β-reduction: (λx.M1)M2
- M1[x: M2]

Translation (−)∗ of MLM is basically the identity, except

λx.M translates into (?x⇒M∗|fail)

M1M2 translates into M∗

1
@M∗

2

Configurations (µ|M, S) with µ: A
fin
→ Eo, and Computation rules for MLM

Strong bisimulation relates (µ|M, S) to multi-set (modulo simplification) with
prg M∗ S∗ represents program thread
str a M∗ whenever µ(a) = M , represents the store µ

and computation rules corresponding to those for MLM , e.g.
prg (do ?x1 ?x2) ?S > prg x1 (push x2 S)

prg (new ?x) ?S > νy.prg (ret y) S | str y x

prg (get ?y) ?S | str ?y ?x > prg (ret x) S | str y x
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Encoding of Mobile Ambients [CG98]: centralized impl.

Syntax of MA – processes P ∈ Eo

P : := 0 | (P1|P2) | !P | νy.P | y[P ] | in y.P | out y.P | open y.P

Translation (−)∗ of MA, sample of clauses

(P1|P2) translates into par P ∗

1
P ∗

2

νy.P translates into new (?y⇒P ∗|fail)

y[P ] translates into box y P ∗

in y.P translates into in y P ∗

Configurations for MA = processes (modulo structural equivalence)

Weak bisimulation relates P to a multi-set (modulo simplification) with
prg a e thread executing e in ambient a

amb a n c ambient a has name n and parent ambient c

opened a c ambient a has been opened in parent ambient c
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Syntax of MA – processes P ∈ Eo

P : := 0 | (P1|P2) | !P | νy.P | y[P ] | in y.P | out y.P | open y.P

Configurations for MA = processes (modulo structural equivalence)

Basic reduction rules for MA (there are other rules for propagation)

n[in m.P | Q] | m[R]
in
- m[n[P | Q] | R]

m[n[out m.P | Q] | R]
out
- n[P | Q] | m[R]

open m.P | m[Q]
open

- P | Q

Weak bisimulation relates P to a multi-set (modulo simplification) with
prg a e thread executing e in ambient a

amb a n c ambient a has name n and parent ambient c

opened a c ambient a has been opened in parent ambient c
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P : := 0 | (P1|P2) | !P | νy.P | y[P ] | in y.P | out y.P | open y.P

Configurations for MA = processes (modulo structural equivalence)

Weak bisimulation relates P to a multi-set (modulo simplification) with
prg a e thread executing e in ambient a

amb a n c ambient a has name n and parent ambient c

opened a c ambient a has been opened in parent ambient c

and rules located at the same place {prg, amb, opened} –
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Encoding of Mobile Ambients [CG98]: centralized impl.

Syntax of MA – processes P ∈ Eo

P : := 0 | (P1|P2) | !P | νy.P | y[P ] | in y.P | out y.P | open y.P

Configurations for MA = processes (modulo structural equivalence)

Weak bisimulation relates P to a multi-set (modulo simplification) with
prg a e thread executing e in ambient a

amb a n c ambient a has name n and parent ambient c

opened a c ambient a has been opened in parent ambient c

computation rules for heating (sample of rules)
prg ?y (par ?x1 ?x2) > prg y x1 | prg y x2

prg ?y (new ?x) > νn.prg y (x@n)

prg ?y (box ?n ?x) > νy′.prg y x | amb y′ n y
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Encoding of Mobile Ambients [CG98]: centralized impl.

Syntax of MA – processes P ∈ Eo

P : := 0 | (P1|P2) | !P | νy.P | y[P ] | in y.P | out y.P | open y.P

Configurations for MA = processes (modulo structural equivalence)

Weak bisimulation relates P to a multi-set (modulo simplification) with
prg a e thread executing e in ambient a

amb a n c ambient a has name n and parent ambient c

opened a c ambient a has been opened in parent ambient c

Computation rules for mobility

amb ?y′ ?m ?y′′ | prg ?y (in ?m ?x) | amb ?y ?n ?y′′ > prg y x | amb y n y′

amb ?y′ ?m ?y′′ | prg ?y (out ?m ?x) | amb ?y ?n ?y′ > prg y x | amb y n y′′
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Encoding of Mobile Ambients [CG98]: centralized impl.

Syntax of MA – processes P ∈ Eo

P : := 0 | (P1|P2) | !P | νy.P | y[P ] | in y.P | out y.P | open y.P

Configurations for MA = processes (modulo structural equivalence)

Weak bisimulation relates P to a multi-set (modulo simplification) with
prg a e thread executing e in ambient a

amb a n c ambient a has name n and parent ambient c

opened a c ambient a has been opened in parent ambient c

Computation rules for opening
prg ?y (open ?m ?x) | amb ?y′ ?m ?y > prg y x | opened y′ y

opened ?y′ ?y | prg ?y′ ?x > prg y x

opened ?y′ ?y | amb ?y′′ ?n ?y′ > amb y′′ n y
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Encodings of Mobile Ambients [CG98]

Alternative encoding for distributed impl. of MA [FLS00]

process P of MA related to a multi-set (modulo simplification) with
a prg e thread executing e in ambient a

a sup c ambient a has parent ambient c

c sub a n ambient a has name n and is sub-ambient of c

and computation rules for ambient a located at {a} – for instance

a prg (box ?n ?x) > νy.init y x | y sup a | a sub y n

init ?y ?x > R[y] | y prg x – R[y] set of computation rules for ambient y

Extending encoding for centralized impl. of MA: adding HO communication

P : := . . . | x | 〈P 〉 | (x)P – extended syntax

〈P 〉 | (x)Q
comm

- Q[x: P ] – reduction for local comm.

extended translation (−)∗

〈P 〉 translates into put P ∗

(x)P translates into get (?x⇒P ∗|fail)

prg ?y (get ?x1) | prg ?y (put ?x2) > prg y (x1@x2) – rule for local comm.
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Conclusions and Issues

General approach for structuring operational semantics:
simplification + computation

Simplification capture things that one does not care to control/program,
because they are simple and semantics preserving (referential transparency)

Concrete proposal: based on ideas from FreshML, PMC and CHAM

There is scope for variations and improvements, e.g.
first-class patterns – as in pure pattern calculus [JK06]
more refined computation rules – for probabilistic/stochastic systems
more elaborate configurations – to describe parts of a closed system, e.g.
environment, that are loosely specified or not directly controlled/programed.
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