XXII MFPS, 24-27 May 2006, Genova

Simplification and Computation

Eugenio Moggi

moggi@disi.unige.it

DISI, Univ. of Genova

Summary

- AIM: structuring operational semantics to separate computational effects from other (programming language) features
- Preliminary discussion
 - monadic approach to denotational semantics
 - what kind of operational semantics? TS vs LTS
- General approach
 - simplification: confluent term rewriting, referential transparency
 - computation: configurations, computational effects
- A concrete proposal
 - PMC [Kah03]: pattern matching calculus
 - CHAM [BB92] and Join calculus [FG96,FG02]: configurations as multi-sets of terms (and computation rules)
- Encodings: expected properties, some examples
- Conclusions and issues

Monadic approach in a nutshell

Traditional approach to denotational semantics

PL programming language

 \mathcal{C} category (with suitable properties and additional structure)

Monadic approach to denotational semantics factors $[-]_o$ into

 ML_{M} monadic metalanguage – better separation of mathematical concerns

- ML internal language for category C
- M computational types syntax for monad (or related notions)
- $[-]: ML_M \longrightarrow (C, M)$ standard interpretation parametric w.r.t. monad C category with universal properties, M additional structure (monad)

What kind of operational semantics?

- SOS [Plo81] based on inference rules for deriving operational judgments too general to suggest common patterns and points of variation
- Labeled Transition Systems (LTS) $s \stackrel{l}{\longmapsto} s'$ describe potential interaction of open system with external environment
- **▶** Transition Systems (TS) $s \mapsto s'$ describe potential evolution of closed system open system + environment = closed system
- TS vs LTS: TS are preferable to specify observational equivalence \approx on program fragments (e.g. see work on HO π -calculus [San93]) \approx as congruence induced by basic observations on closed system
- Other (ignored) issues:
 - beyond non-determinism: probabilistic, stochastic and hybrid systems functorial operational semantics based on co-algebras [Tur96]
 - static guarantees: operational semantics specified independently
- REPLACE category (for denotational sem.) with TS (for operational sem.)

General approach: simplification and computation

- Distinguish atoms from variables FreshML [GP99,SGP03]
- Terms e A(e) and FV(e) denote set of atoms and free variables of e
- SIMPLIFICATION is a relation $e \longrightarrow e'$ on terms
 - preserving atoms and free variables, i.e. $A(e') \subseteq A(e)$ and $FV(e') \subseteq FV(e)$
 - confluent and compatible, i.e. can be applied in any order and any context
 - invariant w.r.t. permutations π of atoms and substitutions ρ of variables with

terms, i.e.
$$\frac{e \longrightarrow e'}{e[\pi] \longrightarrow e'[\pi]} \quad \frac{e \longrightarrow e'}{e[\rho] \longrightarrow e'[\rho]}$$

General approach: simplification and computation

- Distinguish atoms from variables FreshML [GP99,SGP03]
- Terms e A(e) and FV(e) denote set of atoms and free variables of e
- SIMPLIFICATION is a relation $e \longrightarrow e'$ on terms
- Configurations s built from terms A(s) set of atoms of s (no free variables) thus simplification extends to configurations $s_1 \longrightarrow s_2$

 $s_1 \longmapsto s_2$

- **OMPUTATION** is a relation $s_1 \mapsto s_2$ on configurations
 - invariant w.r.t. permutations π of atoms

• preserved by simplification, i.e. * s_1' s_2' s_2'

General approach: simplification and computation

- Distinguish atoms from variables FreshML [GP99,SGP03]
- Terms e A(e) and FV(e) denote set of atoms and free variables of e
- SIMPLIFICATION is a relation $e \longrightarrow e'$ on terms
- Configurations s built from terms A(s) set of atoms of s (no free variables) thus simplification extends to configurations $s_1 \longrightarrow s_2$
- **DESCRIPTION** Second Section $s_1 \mapsto s_2$ on configurations

Simplification supports referential transparency, thus

- suitable for pure functional languages (PFL), typed calculi for proof assistants
- implementable using PFL techniques: lazy evaluation, graph reduction

Computation induces TS on configurations modulo simplification – CHAM [BB92]. In *reduction semantics* configurations are terms.

- ullet atom $a\in A$, name variable y, Name $u\in N:=a\mid y$
- term variable x, pattern p, Term $e \in E$ related to PMC [Kah03] $p ::= |?x| u \overline{p}| |?y \overline{p}| u \text{ matches only itself, } ?y \text{ matches any } u$ atoms A(p), declared variables DV(p) and free (name) variables FV(p) of p

p	A(p)	DV(p)	FV(p)
?x		x	
$u \overline{p}$	$A(u, \overline{p})$	$\mathrm{DV}(\overline{p})$	$\mathrm{FV}(u,\overline{p})$
$?y\ \overline{p}$	$A(\overline{p})$	$y, \mathrm{DV}(\overline{p})$	$\mathrm{FV}(\overline{p}) - \underline{\pmb{y}}$
$p \overline{p}$	$A(p, \overline{p})$	$\mathrm{DV}(p,\overline{p})$	$\mathrm{FV}(p), \mathrm{FV}(\overline{p}) - \mathrm{DV}(p)$

- linearity: ?x and ?y can be declared at most once
- binding: the occurrences of y on the left of ?y are bound

- atom $a \in A$, name variable y, Name $u \in A : := a \mid y$
- term variable x, pattern p, Term $e \in E$ related to PMC [Kah03]

$$p ::= ?x \mid u \overline{p} \mid ?y \overline{p} \quad u$$
 matches only itself, $?y$ matches any u

$$e ::= x \mid u \ \overline{e} \mid ok \ e \mid fail$$
 constructor u applied to sequence of terms

$$(p \Rightarrow e_1 | e_2) | e_1@e_2 | e_1: p \Rightarrow e_2 | (e_1; e_2) |$$

 $\begin{array}{lll} & (p \Rightarrow e_1|e_2) \mid e_1@e_2 \mid e_1 \colon p \Rightarrow e_2 \mid (e_1;e_2) \mid & \mathsf{PMC} \; [\mathsf{Kal03}] \\ & | \; \mathsf{let} \; \{x_i = e_i | i \in n\} \; \mathsf{in} \; e & \mathsf{binding} \; \mathsf{for} \; \mathsf{mutual} \; \mathsf{recursive} \; \mathsf{definitions} \end{array}$

e	FV(e)
$p \Rightarrow e_1 e_2)$	$FV(p), FV(e_1) - \frac{DV(p)}{P}, FV(e_2)$
$e_1: p \Rightarrow e_2$	$FV(e_1), FV(p), FV(e_2) - \frac{DV(p)}{P}$
• • •	•••

- **a**tom $a \in A$, name variable y, Name $u \in A : := a \mid y$
- **•** term variable x, pattern p, Term $e \in E$ related to PMC [Kah03]

$$p ::= ?x \mid u \overline{p} \mid ?y \overline{p} \quad u$$
 matches only itself, $?y$ matches any u

$$e:=x\mid u\ \overline{e}\mid ok\ e\mid fail$$
 constructor u applied to sequence of terms $\mid (p\Rightarrow e_1|e_2)\mid e_1@e_2\mid e_1:p\Rightarrow e_2\mid (e_1;e_2)\mid$ PMC [Kal03]

- let $\{x_i = e_i | i \in n\}$ in e binding for mutual recursive definitions
- Simplification induced by left-linear and non-overlapping rewrite rules

- atom $a \in A$, name variable y, Name $u \in A ::= a \mid y$
- term variable x, pattern p, Term $e \in E$ related to PMC [Kah03]

$$p ::= ?x \mid u \overline{p} \mid ?y \overline{p} \quad u$$
 matches only itself, $?y$ matches any u

$$e:=x\mid u\;\overline{e}\mid ok\;e\mid fail$$
 constructor u applied to sequence of terms

$$| (p \Rightarrow e_1|e_2) | e_1@e_2 | e_1:p \Rightarrow e_2 | (e_1;e_2) |$$
 PMC [Kal03]

let $\{x_i = e_i | i \in n\}$ in e binding for mutual recursive definitions

Simplification induced by left-linear and non-overlapping rewrite rules

 $v:=u \ \overline{e} \mid (p \Rightarrow e_1 \mid e_2)$ top-level unchanged by simplification or instantiation

- **a**tom $a \in A$, name variable y, Name $u \in A : := a \mid y$
- term variable x, pattern p, Term $e \in E$ related to PMC [Kah03]

```
p ::= ?x \mid u \overline{p} \mid ?y \overline{p} \quad u matches only itself, ?y matches any u
```

$$e:=x\mid u\ \overline{e}\mid ok\ e\mid fail$$
 constructor u applied to sequence of terms $\mid (p\Rightarrow e_1|e_2)\mid e_1@e_2\mid e_1:p\Rightarrow e_2\mid (e_1;e_2)\mid$ PMC [Kal03]

let
$$\{x_i = e_i | i \in n\}$$
 in e binding for mutual recursive definitions

- Simplification induced by left-linear and non-overlapping rewrite rules
- Examples of patterns
 - $p_0 \equiv c ? x$ (with $c \in A$) matched by c e for any $e \in E$
 - $p_1 \equiv c ? y$ matched by c a for any $a \in A$
 - $p_2 \equiv ?y \ y$ matched by $a \ a$ for any $a \in A$

- **a**tom $a \in A$, name variable y, Name $u \in A : := a \mid y$
- **•** term variable x, pattern p, Term $e \in E$ related to PMC [Kah03]

```
p ::= ?x \mid u \overline{p} \mid ?y \overline{p} \quad u matches only itself, ?y matches any u
```

$$e:=x\mid u\ \overline{e}\mid ok\ e\mid fail$$
 constructor u applied to sequence of terms $\mid (p\Rightarrow e_1|e_2)\mid e_1@e_2\mid e_1:p\Rightarrow e_2\mid (e_1;e_2)\mid$ PMC [Kal03]

- | let $\{x_i = e_i | i \in n\}$ in e binding for mutual recursive definitions
- Simplification induced by left-linear and non-overlapping rewrite rules
- Examples of terms
 - test for equality of names $eq = (?y \Rightarrow (y \Rightarrow true)?y' \Rightarrow false|fail)|fail)$
 - term constructors as atoms, term destructors defined with let-binding, e.g. natural numbers: zero z: N and successor s: $N \to N$ are atoms, iterator it: $X \to (X \to X) \to N \to X$ defined by recursion and pattern-matching let $it = (?x \Rightarrow ?f \Rightarrow (z \Rightarrow x \mid s ?n \Rightarrow it@x@f@n \mid fail))$ in . . .

- ightharpoonup join pattern J related to Join and Kell calculi [FG96,FG02,Ste03,BS03]
 - $J ::= \{(u_i \ \overline{p}_i | i \in n)\}$ a multi-set of patterns $u \ \overline{p}$

atoms, declared variables and free (name) variables of J define by union

- ullet weaken linearity: ?x can be declared in at most one $u\ \overline{p}$ of J
- instantiation: $J\rho$ (J and ρ closed) is the *molecule* (multi-set of terms u \overline{e}) obtained by replacing the only occurrence of ?x in J with $\rho(x)$, and all occurrences of ?y and y in J with $\rho(y)$

J in Join have restricted format $y ? y_1 ... ? y_n$: only linear name-matching

- join pattern J related to Join and Kell calculi [FG96,FG02,Ste03,BS03] $J ::= \{(u_i \ \overline{p}_i | i \in n)\} \quad \text{a multi-set of patterns } u \ \overline{p}$
- Computation rule $r ::= J > \nu \overline{y}.R|E R|E$ multi-set of rules and terms

$\mid r \mid$	$\mathrm{FV}(r)$
$J > \nu \overline{y}.R E$	$\mathrm{FV}(J), \mathrm{FV}(R, E) - \overline{y} - \mathrm{DV}(J)$

- join pattern J related to Join and Kell calculi [FG96,FG02,Ste03,BS03] $J::= \{(u_i \ \overline{p}_i | i \in n)\} \quad \text{a multi-set of patterns } u \ \overline{p}$
- **Description** Computation rule $r:=J>
 u\overline{y}.R|E$ R|E multi-set of rules and terms
- Configuration s = multi-set R|E of closed terms and rules, i.e. $FV(R,E) = \emptyset$
- Computation defined by name generation + multi-set rewriting

$$s \mid r \mid J\rho \longmapsto s \mid r \mid (R|E)[\overline{y}; \overline{a}, \rho]$$
 where $r \equiv J > \nu \overline{y}.R|E$ ρ closed substitution for variables in $\mathrm{DV}(J)$ and \overline{a} fresh for $s \mid r \mid J\rho$

- Join/Kell rules are in BNF of terms: reflexive CHAM
- r in Kell can be used only once: but replication allows indefinite reuse
- Join has implicit set of locations (by partitioning A) and rules are located.
 One can impose syntactic restrictions on r to enforce this property.

- join pattern J related to Join and Kell calculi [FG96,FG02,Ste03,BS03] $J::= \{(u_i \ \overline{p}_i | i \in n)\} \quad \text{a multi-set of patterns } u \ \overline{p}$
- Computation rule $r:=J>
 u\overline{y}.R|E$ R|E multi-set of rules and terms
- Configuration s = multi-set R|E of closed terms and rules, i.e. $FV(R,E) = \emptyset$
- Computation defined by name generation + multi-set rewriting
- Example of interpreter for imperative programs
 - interpreted atoms: ... $new: X \to (RX \to MY) \to MY$ initialize new reference with a value $get: RX \to (X \to MY) \to MY$ get value store in reference
 - atoms prg: MY and str: RX, X for program and store
 - computation rules for imperative programs:

$$\begin{array}{l} \textit{prg} \ (\textit{new} \ ?x \ ?k) > \nu y. \textit{prg} \ (k@y) \mid \textit{str} \ y \ x \\ \\ \textit{prg} \ (\textit{get} \ ?y \ ?k) \mid \textit{str} \ ?y \ ?x > \textit{prg} \ (k@x) \mid \textit{str} \ y \ x \end{array}$$

Encodings – general ideas

Direct approach to operational semantics

- PL programming language syntax
- basic observations on configurations ignored for simplicity

Operational semantics via encoding

- ullet $(-): PL \longrightarrow {\sf E}$ compositional encoding of programs (and other syntactic categories) into terms
- $\mathbf{R} \subset S_o \times S$ surjective *bisimulation* between $(S_o, \vdash_o \rightarrow)$ and $(S, \xrightarrow{*} \stackrel{*}{\longmapsto} \xrightarrow{*})$

Encoding of monadic metalanguage ML_M (with references) [MF03]

- ullet Syntax of monadic metalanguage term $M \in E_o$
 - $M ::= x \mid \lambda x.M \mid M_1M_2 \mid \text{ret } M \mid \text{do } M_1 \mid M_2 \mid \text{new } M \mid \text{get } M \mid \text{set } M_1 \mid M_2 \mid a$
 - S:= none | push M S references a and control stacks S are instrumental
- Simplification for ML_M is β -reduction: $(\lambda x.M_1)M_2 \longrightarrow M_1[x:M_2]$
- Translation $(-)^*$ of ML_M is basically the identity, except
 - $\lambda x.M$ translates into $(?x \Rightarrow M^*|fail)$
 - M_1M_2 translates into $M_1^*@M_2^*$

Encoding of monadic metalanguage ML_M (with references) [MF03]

- Syntax of monadic metalanguage term $M \in E_o$
 - $M ::= x \mid \lambda x.M \mid M_1M_2 \mid \text{ret } M \mid \text{do } M_1 \mid M_2 \mid \text{new } M \mid \text{get } M \mid \text{set } M_1 \mid M_2 \mid a$
 - $S ::= none \mid push \ M \ S$ references a and control stacks S are instrumental
- **Simplification** for ML_M is β -reduction: $(\lambda x.M_1)M_2$ → $M_1[x:M_2]$
- Configurations $(\mu|M,S)$ with $\mu: A \xrightarrow{fin} E_o$, and Computation rules for ML_M
 - $(\mu|\operatorname{do} M_1 M_2, S) \longmapsto (\mu|M_1, \operatorname{push} M_2 S)$
 - $(\mu|\operatorname{ret} M_1,\operatorname{push} M_2 S) \longmapsto (\mu|M_2M_1,S)$
 - $(\mu | new M, S) \mapsto (\mu, a: M | ret a, S)$ with $a \in A$ fresh
 - $(\mu | \mathbf{get} \, a, S) \longmapsto (\mu | \mathbf{ret} \, M, S) \text{ if } \mu(a) = M$
 - \bullet $(\mu, a: M' | \text{set } a M, S) \longmapsto (\mu, a: M | \text{ret } a, S)$

Encoding of monadic metalanguage ML_M (with references) [MF03]

- Syntax of monadic metalanguage term $M \in E_o$
 - $M ::= x \mid \lambda x.M \mid M_1M_2 \mid \text{ret } M \mid \text{do } M_1 \mid M_2 \mid \text{new } M \mid \text{get } M \mid \text{set } M_1 \mid M_2 \mid a$
 - S:= none | push M S references a and control stacks S are instrumental
- **Simplification for** ML_M is β -reduction: $(\lambda x.M_1)M_2$ → $M_1[x:M_2]$
- Configurations $(\mu|M,S)$ with $\mu: A \stackrel{fin}{\to} E_o$, and Computation rules for ML_M
- Strong bisimulation relates $(\mu|M,S)$ to multi-set (modulo simplification) with
 - $prg M^* S^*$ represents program thread
 - str a M^* whenever $\mu(a)=M$, represents the store μ
 - and computation rules corresponding to those for ML_M , e.g.
 - $prg(do ?x_1 ?x_2) ?S > prg x_1 (push x_2 S)$
 - $\operatorname{prg}(\operatorname{new}?x)?S > \nu y.\operatorname{prg}(\operatorname{ret}y)S \mid \operatorname{str}yx$
 - $prg (get ?y) ?S \mid str ?y ?x > prg (ret x) S \mid str y x$

Syntax of MA – processes $P \in E_o$

$$P ::= 0 \mid (P_1|P_2) \mid !P \mid \nu y.P \mid y[P] \mid in y.P \mid out y.P \mid open y.P$$

- **▶** Translation $(-)^*$ of MA, sample of clauses
 - $(P_1|P_2)$ translates into par P_1^* P_2^*
 - $\nu y.P$ translates into $new(?y \Rightarrow P^*|fail)$
 - y[P] translates into box $y[P]^*$
 - in y.P translates into in $y.P^*$

- Syntax of MA processes $P \in E_o$ $P ::= 0 \mid (P_1|P_2) \mid !P \mid \nu y.P \mid y[P] \mid \textit{in } y.P \mid \textit{out } y.P \mid \textit{open } y.P$
- Configurations for MA = processes (modulo structural equivalence) Basic reduction rules for MA (there are other rules for propagation)

 - \bullet $m[n[out \ m.P \mid Q] \mid R] \stackrel{out}{\longmapsto} n[P \mid Q] \mid m[R]$
 - open $m.P \mid m[Q] \stackrel{open}{\longmapsto} P \mid Q$

- Syntax of MA processes $P \in E_o$ $P ::= 0 \mid (P_1 \mid P_2) \mid !P \mid \nu y.P \mid y[P] \mid \textit{in } y.P \mid \textit{out } y.P \mid \textit{open } y.P$
- \blacksquare Configurations for MA = processes (modulo structural equivalence)
- \blacksquare Weak bisimulation relates P to a multi-set (modulo simplification) with
 - prg a e thread executing e in ambient a
 - amb a n c ambient a has name n and parent ambient c
 - opened a c ambient a has been opened in parent ambient c and rules located at the same place $\{prg, amb, opened\}$ –

- Syntax of MA processes $P \in E_o$ $P ::= 0 \mid (P_1|P_2) \mid !P \mid \nu y.P \mid y[P] \mid \textit{in } y.P \mid \textit{out } y.P \mid \textit{open } y.P$
- \blacksquare Configurations for MA = processes (modulo structural equivalence)
- \blacksquare Weak bisimulation relates P to a multi-set (modulo simplification) with
 - prg a e thread executing e in ambient a
 - ullet amb $a\ n\ c$ ambient a has name n and parent ambient c
 - opened a c ambient a has been opened in parent ambient c computation rules for heating (sample of rules)
 - $prg ? y (par ? x_1 ? x_2) > prg y x_1 | prg y x_2$
 - $\operatorname{prg} ?y (\operatorname{new} ?x) > \nu_{\mathbf{n}}.\operatorname{prg} y (x@_{\mathbf{n}})$
 - prg ?y (box ?n ?x) > $\nu y'$.prg y $x \mid$ amb y' n y

- **Syntax of MA** − processes $P \in E_o$
 - $P : := 0 \mid (P_1|P_2) \mid !P \mid \nu y.P \mid y[P] \mid in y.P \mid out y.P \mid open y.P$
- \blacksquare Configurations for MA = processes (modulo structural equivalence)
- \blacksquare Weak bisimulation relates P to a multi-set (modulo simplification) with
 - prg a e thread executing e in ambient a
 - ullet amb $a\ n\ c$ ambient a has name n and parent ambient c
 - opened a c ambient a has been opened in parent ambient c
- Computation rules for mobility

- Syntax of MA processes $P \in E_o$ $P ::= 0 \mid (P_1|P_2) \mid !P \mid \nu y.P \mid y[P] \mid \textit{in } y.P \mid \textit{out } y.P \mid \textit{open } y.P$
- \blacksquare Configurations for MA = processes (modulo structural equivalence)
- \blacksquare Weak bisimulation relates P to a multi-set (modulo simplification) with
 - prg a e thread executing e in ambient a
 - ullet amb $a\ n\ c$ ambient a has name n and parent ambient c
 - opened a c ambient a has been opened in parent ambient c
 Computation rules for opening
 - prg ?y (open ?m ?x) | amb ?y' ?m ?y > prg <math>y x | opened y' y
 - opened ?y' ?y | prg ?y' ?x > prg y x
 - opened ?y'?y | amb ?y''?n?y' > amb y''n y

Encodings of Mobile Ambients [CG98]

Alternative encoding for distributed impl. of MA [FLS00]

- process P of MA related to a multi-set (modulo simplification) with
 - a prg e thread executing e in ambient a
 - a sup c ambient a has parent ambient c
 - m s c sub a n ambient a has name n and is sub-ambient of c
- **and computation rules for ambient** a located at $\{a\}$ **for instance**
 - $a \operatorname{prg}(\operatorname{box} ?n ?x) > \nu y.\operatorname{init} y \mid y \operatorname{sup} a \mid a \operatorname{sub} y \mid n$
 - init $?y ?x > R[y] \mid y \text{ prg } x R[y]$ set of computation rules for ambient y

Encodings of Mobile Ambients [CG98]

Alternative encoding for distributed impl. of MA [FLS00]

- process P of MA related to a multi-set (modulo simplification) with
 - a prg e thread executing e in ambient a
 - a sup c ambient a has parent ambient c
 - c sub a n ambient a has name n and is sub-ambient of c
- ullet and computation rules for ambient a located at $\{a\}$
- weak bisimulation replaced by weak coupled-simulation: atomic steps of MA implemented with protocols with gradual commitment

Encodings of Mobile Ambients [CG98]

Alternative encoding for distributed impl. of MA [FLS00]

- process P of MA related to a multi-set (modulo simplification) with
 - a prg e thread executing e in ambient a
 - a sup c ambient a has parent ambient c
 - c sub a n ambient a has name n and is sub-ambient of c
- lacktriangle and computation rules for ambient a located at $\{a\}$

Extending encoding for centralized impl. of MA: adding HO communication

- $P::=\dots\mid x\mid \langle P\rangle\mid (x)P \text{ -- extended syntax}$ $\langle P\rangle\mid (x)Q \overset{comm}{\longmapsto} Q[x:P] \text{ -- reduction for local comm.}$
- \blacksquare extended translation $(-)^*$
 - $\langle P \rangle$ translates into *put* P^*
 - (x)P translates into $get(?x\Rightarrow P^*|fail)$
- $ightharpoonup prg ?_{y} (get ?x_1) \mid prg ?_{y} (put ?x_2) > prg y (x_1@x_2) rule for local comm.$

Conclusions and Issues

- General approach for structuring operational semantics: simplification + computation
 - Simplification capture things that one does not care to control/program, because they are simple and semantics preserving (referential transparency)
- Concrete proposal: based on ideas from FreshML, PMC and CHAM There is scope for variations and improvements, e.g.
 - first-class patterns as in pure pattern calculus [JK06]
 - more refined computation rules for probabilistic/stochastic systems
 - more elaborate configurations to describe parts of a closed system, e.g.
 environment, that are loosely specified or not directly controlled/programed.